

The MONK Project Final Report
John Unsworth and Martin Mueller

September	
 2,	
 2009

I. Brief description of the project and purpose of the grant:

In the original proposal for the MONK (Metadata Offer New Knowledge) project, we
envisioned three phases to this project:

1) Assembling a substantial testbed (on the order of millions of words)* of literary
texts in English, from the beginning of the history of print to the early 20th
century; combining functionality from WordHoard and Nora (two projects
previously funded by the Andrew W. Mellon Foundation) in a new web-based
interface; and integrating MONK as much as possible as an application layer in
SEASR (Software Environment for the Advancement of Scholarly Research), the
open-source data-analysis infrastructure that succeeds D2K, and that is also
funded by the Andrew W. Mellon Foundation (see http://www.seasr.org/).

2) Doing some proof-of-concept work on social software capabilities for MONK,
including the sharing of intermediate work-products (for example, pre-processed
sub-collections selected by one user and then shared with others), sharing of
results, annotation and correction of data, etc.. Part of this second phase was also
projected to include working with a small number of libraries and publishers to
provide the tools we have built with existing large collections.

3) Deploying the MONK tools in a distributed environment that would allow
scholars to do text-mining across multiple large collections.

* The actual testbed is upward of 100 million words

We requested funding for the first and second phases, and estimated that the third phase
was beyond scope for this round of funding, though outcomes in this round should
provide a use-case for projects interested in the issues involved in distributed text-mining.

Project participants included:

University of Alberta:

• Matt Bouchard
• Carlos Fiorentino
• Piotr Michura
• Mike Plouffe
• Milena Radzikowska
• Bernie Roessler
• Stan Ruecker+
• Kirsten Uszkalo
• Cheryl Wilkinson

MONK	
 Project	
 Final	
 Report	
 	
 2	

University of Illinois Urbana-Champaign:
• Amit Kumar
• John Unsworth+
• Xin Xiang

University of Maryland:

• Tanya Clement
• Anthony Don
• Matthew Kirschenbaum+
• Greg Lord
• Catherine Plaisant+
• Martha Nell Smith

McMaster University:

• James Chartrand
• Andrew MacDonald
• Stefan Sinclair

National Center for Supercomputing Applications

• Loretta Auvil
• Bernie A'cs
• Duane Searsmith

University of Nebraska, Lincoln:

• Brian Pytlik Zillig
• Steve Ramsay+
• Sara Steger (University of Georgia)

Northwestern University:

• Philip "Pib" Burns
• Martin Mueller
• John Norstad
• Joe Paris
• Bill Parod
• Bob Taylor

+ denotes working group ("cell") leader

II. Progress achieved and challenges encountered since the last reporting period:

Overview:

The fullest source of information about the MONK project is its public web site, which
can be found at http://monkproject.org/. A version of this report will be posted there, and
it already contains downloadable software, downloadable data sets, running versions of

MONK	
 Project	
 Final	
 Report	
 	
 3	

software, documentation for users and developers, tutorials, and a complete snapshot of
the wiki that project participants used to communicate during the course of the last two
years.

The texts used in MONK come from a variety of archives that were encoded by libraries
following the TEI’s P-4 Guidelines. They add up to a corpus of ~2,500 texts (~150
million words) and can be described as an "L-shaped corpus," where the horizontal leg
provides coverage across multiples genres in the century from the birth of Queen
Elizabeth to the death of King James (1533-1625), while the vertical leg provides
coverage of one genre, fiction, across four centuries.

For users of public domain materials, MONK provides quite good coverage of 19th
century American fiction, downloadable as TEI P-5 files, with or without part-of-speech
annotation, or available for exploration in the user interfaces developed by the MONK
project. The full corpus will be accessible only to CIC institutions, or possibly other
universities that are subscribers to the Text Creation Partnership and Chadwyck-Healey
databases, at least until the middle of the next decade, when the TCP texts will pass into
the public domain. At that point, publicly available texts of reasonably high quality will
include just about any text of English letters before 1800 that has ever been of interest to
scholars.

The table below describes the collections that make up MONK, and gives summary
information about the number of works each collection contains, the number of authors
represented by those works, and the number of words in the collection—as well as some
information about access restrictions on each collection.

Collection Works Authors Words availability

DocSouth
 113 68 8.6 million public

Early American
Fiction 111 16 5.2 million public

EEBO 691 281 39.4 million restricted until after
2015

ECCO 1077 196 34.2 million restricted until after
2015

19th century fiction 250 102 39.4 million restricted

Shakespeare 42 1 0.9 million public

Wright American
Fiction 1850-75 301 159 23.5 million public

Total 2585 806 151.5 million

MONK	
 Project	
 Final	
 Report	
 	
 4	

The 2,500 source files for MONK add up to just over a gigabyte. The linguistically
annotated files take up 26 gigabytes. The MySQL databases with its indexes and
precomputed data takes up 180 gigabytes. The MONK datastore runs on a fairly ordinary
server that costs about $6,000.00.

MONK components and architecture:

MONK consists of a datastore, middleware, an analytics engine, and various user-
interfaces, of which the MONK Workbench is the most developed. The MONK project
also spent time on some related proof-of-concept work (like faceted browsing for
selecting worksets from large collections, or using Zotero to pass those collections into
the Workbench). The datastore was produced by an ingest process that used XSL
routines collectively referred to as Abbot, a part-of-speech tagger called Morphadorner,
and a database loader called Prior, all of which were developed wholly or in part during
the MONK project. MONK middleware handles traffic passing back and forth among
the user interface, the datastore, and the analytics engine. The analytics engine is
SEASR (the Software Environment for Advancement of Scholarly Research), and it takes
information from the user (for example, ratings of texts in a supervised learning
scenario), combines that with the actual data from the datastore, and runs user-specified
statistical routines (Naïve Bayes, etc.) to produce text-mining results.

Building a MONK Datastore:

Using techniques described in more detail below, the source texts were converted into a
common interchange format and were linguistically annotated in a manner that virtually
levels orthographic, morphological, and dialectal variance across the texts. The goal in
this part of MONK has been to create a document space in which every word or phrase in
any document becomes comparable with any word or phrase in any other document and
the variables of author, date, genre, place of origin, lexical, grammatical, prosodic, or
narratological status. Consistent and unified metadata, including word-level metadata,
are the key to a deeper grasp of substantive difference in the underlying texts.

The linguistically annotated texts were next moved into a relational datastore that exposes
textual data, metadata, and many precomputed counts of textual objects in a coherently
structured 'object model' written in Java. Communication with this object model hapens
via a proxy server, which is the gateway through which different user interfaces can
approach and explore MONK’s query potential.

Data-herding with Abbot

“In	
 theory,	
 there	
 is	
 no	
 difference	
 between	
 theory	
 and	
 practice—but	
 in	
 practice,	

there	
 is.”	

-­‐-­‐Jan	
 L.	
 A.	
 van	
 de	
 Snepscheut	

	

One of the declared goals of the Text Encoding Initiative has been to create digitally
encoded texts that are 'machine-actionable' in the sense of allowing a machine to process

MONK	
 Project	
 Final	
 Report	
 	
 5	

the differences that human readers negotiate effortlessly in moving from a paragraph,
stanza, scene etc. in one book to a similar instance in another. American university
libraries have developed a six-level hierarchy of encoding texts that is theoretically
interoperable, but as we discovered very early in MONK, in practice, these texts do not
actually interoperate. Encoding projects at Virginia, Michigan, North Carolina, and
Indiana certainly share family resemblances, but it is also obvious that in the design of
these projects local preferences or convenience always took precedence over ensuring
that 'my texts' will play nicely with 'your texts'. And aside from simple interoperability,
there is even less affordance for extensibility: none of the archives seriously considered
the possibility that some third party might want to tokenize or linguistically annotate their
texts.

In fairness to these past practices, though, several points need to be made. The MONK
texts come from encoding projects that date back to the nineties, and it would not have
been easy for a project director/librarian to imagine that a quite ordinary professor of
English could store and manipulate all the TEI archives created at Michigan, Virginia,
North Carolina, and Indiana on the quite ordinary computer provided by his university
without pushing its limits. Nor was it easy to imagine that from technical perspectives of
speed or storage the linguistic annotation of very large corpora would be a relatively
trivial task. It is also true that the P4 Guidelines, however variably observed, were a lot
better than nothing; and there is the fact that during the MONK project, there was a major
version release in the TEI. TEI P5 is the first version to be based on native XML. It is not
backwardly compatible and makes more extensive use of general protocols in the XML
world. We approached the task of making our texts "MONK compatible" from the
perspective of creating a P5-based interchange format that would not only serve our
purposes but might become a model for others. (Conceptually, this part of the project is
similar to the 'Kernkodierung' or 'base line encoding' in the German TextGrid project).

We called this part of the project 'Abbot'. It involved a variety of shell scripts written by
Stephen Ramsay, but at its heart it uses a method developed by Brian Pytlik Zillig
involving a set of master XSLT stylesheets that write second-level XSLT stylesheets that,
in turn, transform a given text into the MONK version of TEI-P5. MONK’s version of
TEI-P5 is a close cousin of TEI-Lite. We called it TEI-Analytics (TEI-A for short) to
stress the fact that its major goal was to facilitate analytical routines across a variety of
corpora. TEI-A incorporates a subset of elements for linguistic annotation and was, we
note, responsible for broadening the content model of the <w> element in P5. The TEI-A
schema is documented at http://segonku.unl.edu/teianalytics/TEIAnalytics.html

Most of the challenges for Abbot focused on what theologians of an earlier era called
'adiaphora' or 'non-necessaria'—things like the treatment of hyphenated words at the end
of a line or page. What are trivia from the reader's perspective are major stumbling blocks
in workflows that aim at creating a document space in which texts of different origins can
be treated as members of a single corpus.

MONK	
 Project	
 Final	
 Report	
 	
 6	

Linguistic annotation with Morphadorner

After conversion to a TEI-A format texts were linguistically annotated with
Morphadorner, a tool developed by Phil Burns, using the NUPOS tag set designed by
Martin Mueller. The basic goal here has been to develop a common descriptive
framework for written English from Chaucer onward. Annotation with Morphadorner
involves	
 the	
 tokenization	
 of	
 a	
 text	
 and	
 the	
 description	
 of	
 every	
 word	
 token	
 in	
 terms	

of	

• its	
 lemma	
 	

• its	
 standard	
 spelling	
 	

• its	
 part	
 of	
 speech	
 	

	

Thus	
 a	
 form	
 like	
 'louyth'	
 appears	
 as	

<w	
 reg="loveth",	
 lem="love",	
 pos="vvz">louyth</w>	
 	

There are several distinct problems that need solving if you want to provide a common
metalanguage for a diachronical, dialectically, and generically diverse corpus. Commonly
used tag sets (Penn Treebank, CLAWS) assume standardized spelling and use the
apostrophe as a token splitter for the possessive case (Mary's) and contracted forms
(don't). But before the eighteenth century the apostrophe is not a dependable marker of
possessive forms, and the language is full of contracted forms that are not explicitly
marked, such as 'nilt' (wilt thou not), 'nas' (was not). In 19th century fiction, contracted
dialect forms are often written as a single word (dinna, didna).

In its MONK implementation Morphadorner proceeds on the assumption that the
tokenizer should not sunder what the typesetter has joined. Spellings like "can't", 'didna',
"nilt", or "th'earth" are treated as single tokens, with the orthography reflecting a
perception of linguistic reality that marks some difference, however slight, from the
reality reflected in the spellings "the earth" or "did not".

The consequence of this decision is that single tokens may have compound description.
The possessive case, however, is treated like a simple case marker, which it historically
is. Forms like 'dinna' or "won't" are treated as negative verb forms. Words like 'never',
'nothing', or 'nowhere' also have a negative marker. This has the advantage that the degree
of negation becomes an easily searchable phenomenon, whether or not it is expressed in a
distinct word.

Morphadorner explicitly marks sentence boundaries, thus allowing for the extraction and
analysis of sentences from a corpus. This depends on a distinction between various
functions of the period mark—a very tricky task in any form of written English, but
particularly hard in Early Modern English with its confusing practices of abbreviation
and the uses of the period mark in Roman numerals.

MONK	
 Project	
 Final	
 Report	
 	
 7	

From the morphadorned text to the datastore

The upshot of the previous paragraph is that from the workflow that leads through Abbot
to morphadorned files you can construct coherent linguistic corpora of indefinite size and
move English texts from the late Middle Ages to our day in the level plane of a single
document space where any word(s) here can be compared with any word(s) there. What
you do with a set of texts created in this fashion is another question. The MONK
datastore is one answer. It takes about 30 hours to build the entire datastore, and given its
design of interlocking indexes, to change anything is to rebuild everything. Linguistic
annotation is a divisible task, however, in the sense that it can be done text-by-text or it
can be distributed across different computers. The Morphadorner program used for
MONK handles between 12 and 18 million words per hour per CPU.

To create this datastore, morphadorned texts were ingested into a MySQL database, using
an object model written in Java. You could write direct SQL queries against that
database, but it is designed to be explored through its Java object model. This object
model is very fully documented at http://gautam.lis.illinois.edu:8080/monk/servlet, a test
app site that includes a number of example queries. While not designed with an end user
in mind, this test site is the best way to find out about the affordances of the datastore,
which go considerably beyond the routines that are currently enabled in the user interface
(see below).

For each work ingested, the datastore receives two pieces of information: the
linguistically annotated text and a kind of "property sheet" that provides information
about the author, genre, and circulation date of the work. Information about the author, in
turn, includes data about birth, death, and origin. Some of these data can be (and indeed
were) extracted from the teiHeader of each work. Some data had to be supplied
externally. Bibliographical data in the teiHeader do not give you reliable information
about the author's sex, origin or the work's genre or date. For instance, the header for the
Jew of Malta tells you correctly that it was published in 1633. But the work dates to
~1590. In MONK every work is assigned a "circulation date," which is the best estimate
for the time at which it became available.

The data in this property sheet could (and perhaps should) be integrated into the
teiHeader of each work, but for us it was simpler to treat them separately. They govern
much of the query potential of the data, and they are the criteria by which users construct
work sets for comparison or analysis.

The datastore is most readily seen as an inventory in which every word occurrence is a
lowest-level object. It its described in terms of its lemma and part of speech. It inherits
the properties of the work of which it is part (e.g. a poem written by a female writer in the
1570's). It inherits some properties of its immediate neighbourhood. If in the XML
source its immediate ancestor was an <l> tag it is classified as verse. If not, it is classified
as prose. It is XML ancestor was an element like <note>, <speaker>, <front> or the like,
it is classified as 'paratext' and excluded from default counts. Thus the count of 'king' in
Hamlet includes only the cases where 'king' is spoken by a character. In this inventory a

MONK	
 Project	
 Final	
 Report	
 	
 8	

lot of parts are precomputed. A search for 'king' in plays between 1590 and 1600 sums
the counts for each play rather than counts each occurrence from scratch. The many
'count objects' in the datastore account for the fact that it is seven times as large as the
annotated texts on which it is based.

While many of the searches in MONK are based on a 'bag of words' model in which a
text is reduced to an inventory of word tokens with counts, the datastore 'knows'
something about a word's neighbours. Linguists have found that the distribution of part-
of-speech trigrams across a text tells you much about it. For each work the datastore
keeps track of its POS trigrams, just as it keeps track of its lemma bigrams, whether 'in
the' or 'beauteous majesty'. Any word in the datastore also knows about its neighbour on
the left or right, and it is in principle possible to look for indefinite sequences of spellings
or POS tags, but these are not precomputed and therefore take longer to retrieve.

The MONK Workbench and other interface experiments

Some of this query potential is exposed in the current user interface, which is based on a
“workbench” metaphor and

• allows	
 for	
 defining	
 and	
 storing	
 'projects'	
 	

• has	
 flexible	
 methods	
 for	
 defining	
 'work	
 sets',	
 i.e.	
 collections	
 of	
 works	
 or	
 work	

parts	
 that	
 serves	
 as	
 the	
 objects	
 of	
 analysis	
 	

• supports	
 several	
 statistical	
 routines,	
 run	
 through	
 SEASR—in	
 particular	
 Naive	

Bayes,	
 Naive	
 Bayes	
 with	
 Decision	
 Tree,	
 and	
 Dunning's	
 log	
 likelihood	
 ratio,	
 for	

comparing	
 and	
 classifying	
 different	
 works	
 or	
 collections.	

• allows	
 users	
 to	
 save	
 result	
 sets	
 or	
 export	
 them	
 for	
 use	
 in	
 other	
 environments	

(Excel,	
 ManyEyes,	
 etc)	
 	

The	
 MONK	
 workbench	
 is	
 written	
 in	
 Javascript,	
 with	
 underlying	
 MONK	
 middleware	

written	
 in	
 Java,	
 and	
 it	
 communicates	
 with	
 a	
 (local	
 or	
 remote)	
 installation	
 of	
 SEASR	

to	
 run	
 its	
 analytic	
 routines.	
 	
 SEASR	
 and	
 the	
 Workbench	
 both	
 use	
 the	
 MONK	

middleware	
 to	
 communicate	
 with	
 the	
 datastore,	
 which	
 can	
 also	
 be	
 local	
 or	
 remote.	
 	
 	

	

The	
 Workbench	
 itself	
 is	
 component-­‐based,	
 highly	
 extensible,	
 and	
 well	
 documented,	

including	
 documentation	
 for	
 component	
 developers	
 and	
 a	
 video	
 tutorial	
 on	
 using	

the	
 Spket	
 Javascript	
 editor	
 to	
 produce	
 MONK	
 components.	
 	
 Extensive	
 tutorial	
 and	

help	
 documentation	
 for	
 users	
 of	
 the	
 MONK	
 workbench	
 is	
 available	
 from	
 within	
 the	

interface	
 or	
 at	

http://gautam.lis.illinois.edu/monkmiddleware/public/tutorial/index.html	

Reading	
 this	
 documentation	
 would	
 probably	
 be	
 the	
 best	
 way	
 to	
 get	
 an	
 in-­‐depth	

sense	
 of	
 what	
 the	
 user-­‐interface	
 allows,	
 and	
 comparing	
 the	
 interface	
 functionality	
 to	

the	
 features	
 made	
 visible	
 at	
 the	
 test	
 app	
 site	

http://gautam.lis.illinois.edu:8080/monk/servlet
would be the best way to get a sense of the potential of the datastore not yet realized in
the interface. Alternately, you could experiment with the Workbench itself, at
http://gautam.lis.illinois.edu/monkmiddleware/public/index.html, using public domain
collections. The full MONK datastore is available but password-protected at
http://monk.lis.uiuc.edu/monkmiddleware: once the InCommon integration (described

MONK	
 Project	
 Final	
 Report	
 	
 9	

below) is complete, the entire MONK datastore will be available in the Workbench to
users at most CIC institutions using their own usernames and passwords, and that facility
will be linked at http://monkproject.org/

Other interfaces to the datastore were developed during the course of the MONK project,
and those include:

• TeksTale, an interface for fast, unsupervised clustering that allows list-based,
graph-based, or tree-based visualizations of results, along with word-clouds to
show which words were most determinative in clustering, and a tabular display of
word-frequency data, for each cluster. See
http://devadatta.lis.illinois.edu:1719/TeksTale/index.action
for a live demonstration with public domain collections.

• A Flamenco-based faceted browser for assembling collections, and a Firefox
plugin for Zotero that allows Zotero to store those collections and then deliver the
collection metadata to MONK as a workset. Flamenco is an open-source faceted
browser that was developed at Berkeley and funded by the National Science
Foundation; Zotero is an open-source bibliographic tool developed at George
Mason and funded by the Andrew W. Mellon Foundation. See
http://monk.lis.uiuc.edu/cgi-bin/flamenco.cgi/monkpub/Flamenco
for a live demonstration with public domain collections.

	

	

III. Significant board, management or staff changes since the last reporting period:

None.

IV. Recent publications, news articles, or other materials related to the grant:

Most importantly, two dissertations that used MONK as a centrally important research
tool were successfully defended in May of 2009, one on American literature, by Tanya
Clement at the University of Maryland, and the other on British literature, by Sara Steger
at the University of Georgia. Beyond that, there is the extensive software and
documentation produced in and published by this project, including:

• Software:
o HTML Search/Browse Access to the MONK Datastore
o TeksTale: Clustering and Word Clouds (log in with user: guest /

password: guest)
o Flamenco faceted browsing of MONK Collections
o MONK Project plug-in for Zotero (use with Flamenco to build Zotero

collections you can import into MONK as worksets; plug-in ver. 0.1.2
does not work with Zotero ver. 2)

• Downloadable texts, schemas, and source code
• Documentation for:

o Users of The MONK Workbench (see also these training videos on
classification and comparison in the MONK Workbench)

MONK	
 Project	
 Final	
 Report	
 	
 10	

o Developers interested in creating components for the MONK Workbench
(and a screencast on Using the Spket editor)

o Abbot
o The MONK datastore
o Morphadorner (also available as a PDF file)

• Javadocs for:
o The MONK Datastore
o Morphadorner
o Workbench JSDoc

• Schema documentation for TEI Analytics

Last but not least, there are the following journal articles, conference papers, and blog
posts, listed in rough chronological order, either feature MONK as a tool or engage it as
an example and were published since our last MONK report to Mellon:

“Library as virtual abbey”
Robert Fox
OCLC Systems & Services
Volume 24, Issue 2, 2008
DOI:10.1108/10650750810875421

“Visualizing Repetition in Text”
Stan Ruecker, Milena Radzikowska, Piotr Michura, Carlos Fiorentino and Tanya
Clement
CHWP	
 A.46,	
 publ.	
 July	
 2008	

http://www.chass.utoronto.ca/epc/chwp/CHC2007/Ruecker_etal/Ruecker_etal.htm

“Late Nights at the Scriptorium: Interim Results from the Interface Cell of the MONK
Project”
Sinclair, S., Macdonald, A., Bouchard, M., Plouffe, M., Giacometti, A., Kumar, A.,
Radzikowska, M., Ruecker, S., Michura, P., Fiorentino, C., Kirschenbaum, M. and
Plaisant, C.,
Proceedings of the Canadian Digital Humanities Conference (2008)

TEI-Analytics and the MONK Project
Martin Mueller
TEI Annual Members Meeting, 2008
Kings College, London
http://www.cch.kcl.ac.uk/cocoon/tei2008/programme/abstracts/abstract-169.html

“MONK project expands text analysis online literature archives”
Sara Gilliam
The Scarlet, April 24, 2008
University of Nebraska-Lincoln
http://www.unl.edu/scarlet/archive/2008/04/24/story1.html

MONK	
 Project	
 Final	
 Report	
 	
 11	

“Dozens of Little Radio Stations: Getting Technologies Talking in the MONK
Workbench.”
Andrew McDonald, Amit Kumar, Matt Bouchard, Alejandro Giacometti, Matt Patey,
Milena Radzikowska, Piotr Michura, Carlos Fiorentino, Stan Ruecker, Catherine Plaisant,
and Stefan Sinclair.
2008 Chicago Colloquium on Digital Humanities and Computer Science
http://lucian.uchicago.edu/blogs/dhcs2008/schedule/program/session-1/

“‘A thing not beginning and not ending’: using digital tools to distant-read Gertrude
Stein's The Making of Americans”
Tanya E. Clement
Literary and Linguistic Computing 2008 23(3):361-381; doi:10.1093/llc/fqn020

“Digital Shakespeare, or towards a literary informatics”
Martin Mueller
Shakespeare, 1745-0926, Volume 4, Issue 3, 2008, pp 284-301.

“Using the Web as corpus for self-training text categorization”
Rafael Guzmán-Cabrera1, Manuel Montes-y-Gómez, Paolo Rosso and Luis Villaseñor-
Pineda
Information Retrieval
Volume 12, Number 3 / June, 2009
DOI10.1007/s10791-008-9083-7
Tuesday, December 23, 2008

“Text-Grid and MONK”
Martin Mueller
DATA: Digitally Assisted Text Analysis, February 9, 2009
http://literaryinformatics.northwestern.edu/?q=node/21

“Have you heard of the MONK Project- for analyzing texts?”
Writing Studies & the University Libraries, February 24, 2009
http://blog.lib.umn.edu/katep/infolit/2009/02/have_you_heard_of_the_monk_pro.html

“TEI Analytics: converting documents into a TEI format for cross-collection text
analysis”
Brian L. Pytlik Zillig
Literary and Linguistic Computing 2009 24(2):187-192; doi:10.1093/llc/fqp005

“What’s Being Said Near "Martha"? Exploring Name Entities in Literary Text
Collections,”
Vuillemot, R., Clement, T., Plaisant, C., Kumar, A.,
Proceedings of IEEE VAST, 2009

“The Story of One: Humanity scholarship with visualization and text analysis,”
Clement, T., Plaisant, C., Vuillemot, R.,

MONK	
 Project	
 Final	
 Report	
 	
 12	

Proceedings of the Digital Humanities Conference (DH 2009).

 “DH09 Tuesday, session 3: Use Cases Driving the Tool Development in the MONK
Project”
Digilib: The digital library blog at Boston University
http://digilib.bu.edu/blogs/digilib/2009/06/dh09-tuesday-session-3-use-cases-driving-the-
tool-development-in-the-monk-project/

Text-Mining and Humanities Research
John Unsworth
Microsoft Faculty Summit, July 2009
Redmond, Washington
http://research.microsoft.com/en-
us/um/redmond/events/fs2009/presentations/Unsworth_John_DigitalHumanities.pptx

V. Plans and goals for the future:

Integrating MONK with InCommon

The CIC Library heads have provided MONK with up to $15,000 to effect the integration
of the MONK Workbench and Flamenco faceted browser with the InCommon
authentication framework that CIC CIOs have recently adopted. InCommon is a
shibboleth-based framework for authentication across multiple institutions, and we
believe that MONK will be the first library service to be brought up under this
framework. This corresponds to one of the stated goals of phase two, so we are glad to
report that it will be accomplished soon. This will make it possible for us to provide
access to the entire MONK datastore to researchers across the Big Ten, and that research
use should, in turn, provide valuable information for librarians, publishers, and the
disciplines. MONK co-PIs Martin Mueller and John Unsworth, as well as some library
representatives, are scheduled to have a conversation in September with representatives
of Gale, the publisher who partners with the University of Michigan on the Text Creation
Partnership, to talk about how Gale might support such research use in data communities,
or scholarly neighborhoods, and how it might work with scholars and with libraries in the
context of this support.

Affordances and limits of the datastore

The datastore has been tested with 2,500 texts adding up to 150 million words. We think
it will scale up to 250 million words before running into performance problems. That is a
lot of words or not very many, depending on how you look at it. It is little more than a
rounding error in terms of what is on Google's servers. But the work of many scholarly
communities takes place in much smaller textual neighbourhoods. A fiction corpus of
1001 novels from Sidney's Arcadia to Joyce's Ulysses would add up to about 150 million
words. The Chadwyck-Healey English Poetry database has only 90 million words. Every
English play from Gorboduc to Juno and the Paycock that was ever reprinted or attracted

MONK	
 Project	
 Final	
 Report	
 	
 13	

some other notice would fit comfortably into this container.

The point of these cases is very simple. If you think of the datastore as a container with
certain affordances and then think of an interface that explores all or most of its
affordances in a user-friendly manner, there are quite a few scholarly neighbourhoods
that can be accommodated generously with particular instances of it.

Error rates in Morphadorner

Any analytical routine performed on an annotated corpus depends on the quality of the
underlying data, and users need to have a clear sense of where the errors and how much
they matter. POS taggers working with modern English have an error rate of ~ 3%.
Morphadorner performs at that level with texts that are like modern English in most
regards. The error rate is higher in texts or text regions that contain dialect or unusual
orthographic variance.

The accuracy of a POS tagger is critically dependent on the quality of the training data.
For the MONK texts we used training data that were derived from the hand-corrected
versions of Shakespeare and Spenser. These data, supplemented by various lexical data,
were used to tag a dozen 19th century English novels, including Moby Dick and Uncle
Tom's Cabin. Hand-corrected versions of those texts became the training data for tagging
the bulk of English and American fiction, as well as the 18th century texts. For the 16th
and 17th century texts, the WordHoard training data were supplemented by Mary Wroth's
Urania, Painter's Palace of Pleasure, and North's Plutarch.

The further away the test data are from the training the more error-ridden they are likely
to be. In the current run, 4600 occurrences of the spelling 'Ile' are erroneous identified as
instances of the noun 'isle', when in fact they are a contracted form of "I will". The
training data did not include Early modern plays in their original spellings, but they did
include 'ile' as a variant spelling of 'isle'. Martin Mueller is currently engaged in a review
of the 300 Early modern plays in MONK. This will lead to better training data, and in a
second run many errors beyond the plays will be caught. But the identification and
correction of error is fundamentally an iterative business. It not easy to decide how bad is
'good enough'. That is a powerful argument for a framework of user-driven error
correction. If users care enough and you make it easy for them to spot and report errors,
they will fix them. If they don't care, the errors do not matter. This is a matter for future
work and future proposals, but MONK provides necessary underpinning for that work.

Future uses linguistically annotated TEI-A files?

The 'morphadorned' TEI-A files were designed as the input for the MONK datastore. But
the procedures for generating them have a wider range of applicability, and it is worth
sketching future projects that can take them as their point of departure. We can say with
some confidence that we have created the groundwork for an 'English Diachronic
Annotated Corpus' (EDDAC), a very large and public domain archive of written English
from Caxton's Troy book, the first printed book in English (1473) to Joyce's Ulysses

MONK	
 Project	
 Final	
 Report	
 	
 14	

(1922) or beyond if Congress ever touches the sacred date of current copyright.

Opportunities and problems with TCP texts

The foundation of EDDAC would no doubt be the digitized texts in the Text Creation
Partnership, which will pass into the public domain at some point in the next decade and
will by then include some 40,000 works published in the British Isles or America before
1800. That corpus will include just about any text from before 1800 that has been or is
likely to be of more than casual scholarly interest.

We processed 1,800 of the 20,000 or so currently available texts and have probably
encountered and solved most of the problems involved in processing the rest, leaving
aside a small percentage of outliers that would require special treatment or can be
ignored.

While the Text Creation Partnership is a magnificent project, it is also the case that many
of the current texts have serious deficiencies. They are full of gaps, words or letters that
the transcribers could not read, or were instructed to ignore (languages in non-Roman
alphabets). Because of the idiosyncratic and inconsistent treatment of end-of-line
hyphens the texts are riddled with words that are wrongly split or wrongly joined.
Considered as diplomatic transcription of their sources, the current texts are not nearly as
good as they should be. They are obvious candidates for a process of distributed and
collaborative data curation. Oddly enough, it is in some ways easier to do this with a
linguistically annotated text than with the plain file. Morphadorner, for instance, has a
'vertical' output format in which every word token is surrounded by left and right context,
together with the lemma, the POS tag, and a unique sequential identifier that allows you
sort and resort the text in various ways, concentrating on incomplete or missing words,
parts of speech, etc. 'Error-forcing' techniques of this kind do a good job of identifying
and clustering similar types of errors, making their correction easier and more accurate.
Northwestern undergraduates who volunteered to correct the particularly error-ridden
transcription of Marlowe's Tamburlaine had no difficulty deciphering most of the words
the transcribers could not read. They took their laptops to a computer lab, looked at the
vertical screen on their computer, at the EEBO page image on the lab computer screen,
and entered the corrected word in a correction column on their vertical file. This process
generates a tuple associating a unique word_id with a particular type of correction. It is
not hard to envisage a robust and network-based framework in which thousands of such
suggestions for correction lead to substantial improvements in the texts that people care
about for one reason or another. In fact, a	
 proof-­‐of-­‐concept	
 development	
 of	
 such	
 a	

framework,	
 resembling	
 ‘community	
 annotation	
 projects’	
 in	
 genome	
 research,	
 is	

underway	
 at	
 Northwestern.	
 	
 It	
 will	
 use	
 the	
 vertical	
 output	
 format	
 of	
 MorphAdorner	

with	
 a	
 Django-­‐based	
 interface.

Creating digital editions from 19th and early 20th century OCA texts

For texts after 1800, OCR texts from the Open Content Alliance are very promising
candidates for supplementing EDDAC. It is attractive to think of digital surrogates that

MONK	
 Project	
 Final	
 Report	
 	
 15	

allow modern users to experience, say, Bleak House in ways that range seamlessly from
the page image that is a simulacrum of its original materiality to a 'bag of words' model
that highlights distinctive lexical or syntactic qualities of this text when read against a
larger corpus.

During a practicum in the spring of 2009, Katrina Fenlon, a graduate student at GSLIS
did some interesting experiments with Tim Cole and Martin Mueller. What would it take
to convert the 'white space' XML of an OCR text into a TEI-A file that can be
linguistically annotated and become part of EDDAC? How much manual checking and
tweaking is necessary to produce a structurally sound representation of the text? She
thinks the process can be reduced to half an hour, which is not much time for a text that
has some value to some users. The very extensive collection of 19th century English
fiction in the UIUC library makes an excellent guinea pig for further testing and would
supplement the extensive archive of publicly available 19th century American fiction.

Improving the Abbot workflow

If you think of the Abbot workflow as a procedure for converting existing texts to
compatible TEI-P5 versions, it will take some additional work. Two examples from the
TCP make the case. In the SGML source files the common old spelling of 'the' as a 'y'
followed by a superscript 'e' is represented as 'y^e'. An XML transformation changes this
to 'y^e'. In the MONK environment that was a typograpical accidental
without interest, and we replaced it directly with 'the'. The TCP texts use character
entities for early modern brevigraphs, such as '&abper; for 'per', and we resolved those
without trace.

The downside of these shortcuts is that you cannot restore the source text. That was not a
concern with MONK. But it is a concern if you think of an archive of compatible texts
that are subject to continuing data curation. Whatever changes are made need to be made
to the texts that are considered the masterfiles. It is not especially difficult to break down
the process of creating TEI-A files, keep its various stages, and apply linguistic
annotation to a version of the file that can be traced without loss to the source file. Fixing
this problem is a matter of days or weeks rather than weeks or months.

Improving Morphadorner

Morphadorner is very fast: you could theoretically process the entire TCP-EEBO corpus
in five hours with five ordinary dual-core desktop machines. You would not want to do
this without spending considerably more time on creating more customized training data
that would lower the error rate.

In a thoughtful comparative evaluation of a variety of NLP tools, Matthew Wilkens at
Rice concluded that Morphadorner is the tool of choice if you want to annotate
diachronic literary corpora. It is nice to read this since it was designed precisely for that
purpose. Further improvements are largely a matter of creating customized training
data—an intrinsically time-consuming task. Some thought could be given to slimming
down the output. Morphadorner's standard output is quite verbose. Although there are

MONK	
 Project	
 Final	
 Report	
 	
 16	

some options of abbreviated output, there may be some ways of slimming it down further
without loss.

A web-based workflow for selecting and ingesting collections

The work done in this project in creating a Flamenco-based faceted browser and Firefox-
Zotero plugin are two first steps in the direction of allowing users to assemble the
collections with which they want to work. As we move to larger and larger scale in the
digital library, it is not going to be possible to have all material processed in advance, as
they are in the MONK datastore. Instead, data communities will need to support the
ability to select works of interest and submit them to something like the MONK ingest
routine, to prepare them for interactive exploration. For uses such as MONK was
designed, that ingest routine will need to allow users to check output at various stages of
the process, intervene to make adjustments or corrections (to Abbot), choose or develop
appropriate training sets (for Morphadorner), and build their own datastores. We are
interested in developing this workflow in a web-based interface that would be necessarily
modular, since different users might want different tools or have different requirements at
different points in the ingest process. We think such web-based workflow will be critical
cyberinfrastructure when it comes to working with very large collections.

MONK, HathiTrust, the Google Research Corpus, Bamboo

Speaking of very large collections, MONK co-PI John Unsworth is a member of the
recently appointed HathiTrust Research Committee, which is discussing MONK as an
example of a research service that might be provided in conjunction with HathiTrust
materials. The HathiTrust is a shared digital repository for materials being returned to
CIC and California libraries who participate in the Google Books project and in other
digitization projects. One outcome of these discussions will be a proposal to establish a
research facility for working with the Google research corpus, assuming that the final
disposition of Google’s legal case with publishers retains the requirement that Google
will fund such a facility. Experience from all aspects of the MONK project is already
proving useful in the Research Committee’s discussions, and MONK will benefit from
the discussions as well. Finally, MONK and SEASR have been presented and discussed
as examples of tools and services that could be part of Bamboo, the Mellon-funded
cyberinfrastructure project. Also included in the Bamboo discussions have been
representatives of Centernet, a network of digital humanities centers—the same kind of
centers that have been the audience for SEASR’s “train-the-trainers” educational efforts.
We see these various efforts as converging, in the not very distant future, in a partnership
that involves MONK (and many other tools for text analysis), SEASR, Bamboo (possibly
in the form of a virtual appliance), around a research corpus of Google and other
materials, with digital humanities centers as trusted and authenticated institutional
partners, and supercomputing centers as key providers of high-performance computing
facilities.

MONK	
 Project	
 Final	
 Report	
 	
 17	

VI. Intellectual property:

MONK software source code is provided for download at http://monkproject.org All of
the software except that produced exclusively at Northwestern University comes with the
following license terms:

Developed	
 by:	
 The	
 MONK	
 Project	
 	

	
 McMaster	
 University	
 National	
 Center	
 for	
 Supercomputing	

Applications	
 Northwestern	
 University	
 University	
 of	
 Alberta	
 University	
 of	

Illinois	
 at	
 Urbana-­‐Champaign	
 University	
 of	
 Maryland	
 at	
 College	
 Park	

University	
 of	
 Nebraska	
 at	
 Lincoln	
 	

http://www.monkproject.org	

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal with the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

• Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimers.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimers in the documentation and/or
other materials provided with the distribution.

• Neither the names of the MONK project, nor the names of its contributors
may be used to endorse or promote products derived from this Software
without specific prior written permission.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
WITH THE SOFTWARE.

MONK	
 Project	
 Final	
 Report	
 	
 18	

Software produced exclusively at Northwestern University carries this license:

Copyright (c) 2008, 2009 by Northwestern University.
All rights reserved.
Developed by:
 Academic and Research Technologies
 Northwestern University
 http://www.it.northwestern.edu/about/departments/at/

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal with the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

• Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimers.

• Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimers in the documentation
and/or other materials provided with the distribution.

• Neither the names of Academic and Research Technologies, Northwestern
University, nor the names of its contributors may be used to endorse or
promote products derived from this Software without specific prior written
permission.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS WITH THE SOFTWARE.

